

V 6.2

Revised 9/20

EZO-ECTM

Embedded Conductivity Circuit

Reads Conductivity = µ5/cm

Total dissolved solids = ppm

Salinity = PSU (ppt) 0.00 - 42.00

Specific gravity

(sea water only) = 1.00 - 1.300

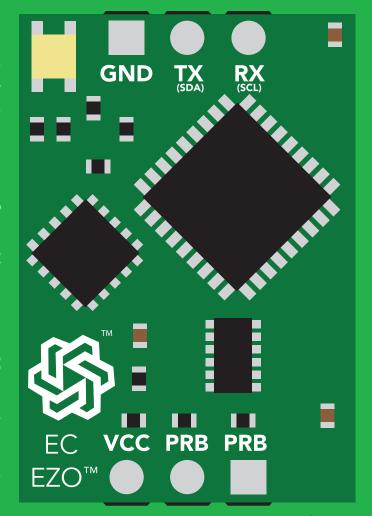
Range **0.07 – 500,000+ μS/cm**

Accuracy +/- 2%

Response time 1 reading per sec

Supported probes K 0.1 - K 10 any brand

Calibration 1 or 2 point

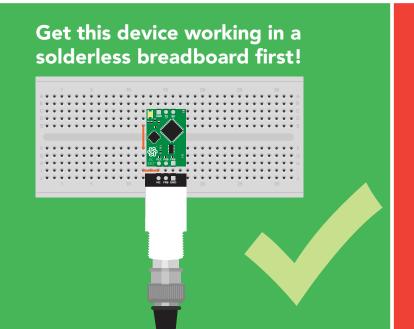

Temp compensation Yes

Data protocol UART & I²C

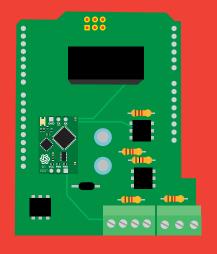
Default I²C address 100 (0x64)

Operating voltage 3.3V - 5V

Data format ASCII



PATENT PROTECTED


SOLDERING THIS DEVICE VOIDS YOUR WARRANTY.

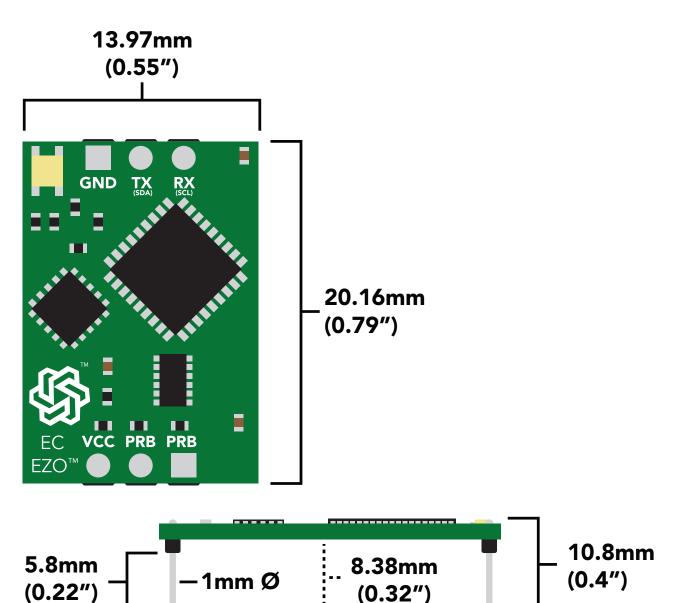
This is sensitive electronic equipment. Get this device working in a solderless breadboard first. Once this device has been soldered it is no longer covered by our warranty.

This device has been designed to be soldered and can be soldered at any time. Once that decision has been made, Atlas Scientific no longer assumes responsibility for the device's continued operation. The embedded systems engineer is now the responsible party.

Do not embed this device without testing it in a solderless breadboard!

Table of contents

4	Output units	8
4	Power and data isolation	9
4	Correct wiring	11
5	Calibration theory	12
6	Default state	17
7	Available data protocols	18
	4 4 4 5 6 7	Power and data isolation Correct wiring Calibration theory Default state


UART

UART mode	20
Receiving data from device	21
Sending commands to device	22
LED color definition	23
UART quick command page	24
LED control	25
Find	26
Continuous reading mode	27
Single reading mode	28
Calibration	29
Change TDS conversion factor	30
Export calibration	31
Import calibration	32
Setting the probe type	33
Temperature compensation	34
Enable/disable parameters	35
Naming device	36
Device information	37
Response codes	38
Reading device status	39
Sleep mode/low power	40
Change baud rate	41
Protocol lock	42
Factory reset	43
Change to I ² C mode	44
Manual switching to I ² C	45

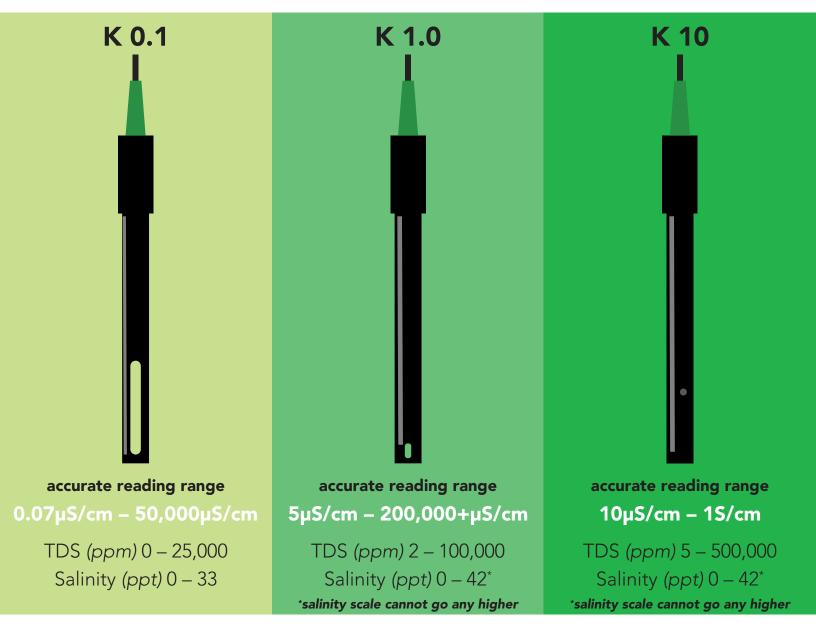
I^2C

I'C mode	47
Sending commands	48
Requesting data	49
Response codes	50
LED color definition	51
I ² C quick command page	52
LED control	53
Find	54
Taking reading	55
Calibration	56
Change TDS conversion factor	57
Export calibration	58
Import calibration	59
Setting the probe type	60
Temperature compensation	61
Enable/disable parameters	62
Naming device	63
Device information	64
Reading device status	65
Sleep mode/low power	66
Protocol lock	67
I ² C address change	68
Factory reset	69
Change to UART mode	70
Manual switching to UART	71

EZO ™ circuit dimensions

	LED	MAX	STANDBY	SLEEP
5V	ON	50 mA	18.14 mA	0.7 mA
	OFF	45 mA	15.64 mA	
3.3V	ON	35 mA	16.85 mA	0.4 mA
	OFF	34 mA	15.85 mA	

Power consumption Absolute max ratings


Parameter	MIN	TYP	MAX
Storage temperature (EZO™ Conductivity)	-60 °C		150 °C
Operational temperature (EZO™ Conductivity)	-40 °C	25 °C	125 °C
VCC	3.3V	5V	5.5V

Conductivity probe range

The EZO™ Conductivity circuit is capable of connecting to any two-conductor conductivity probe, ranging from:

K 0.01

Atlas Scientific[™] has tested three different K value probe types:

Atlas Scientific[™] does not know what the accurate reading range would be for conductivity probes, other than the above mentioned values. Determining the accurate reading range of such probes, i.e. **K 2.6**, or **K 0.66**, is the responsibility of the embedded systems engineer.

Resolution

The EZO[™] Conductivity circuit, employs a method of scaling resolution. As the conductivity increases the resolution between readings decreases.

The EZO[™] Conductivity circuit will output conductivity readings where the first **4 digits** are valid and the others are set to 0. This excludes conductivity readings that are less than 9.99. In that case, only 3 conductivity digits will be output.

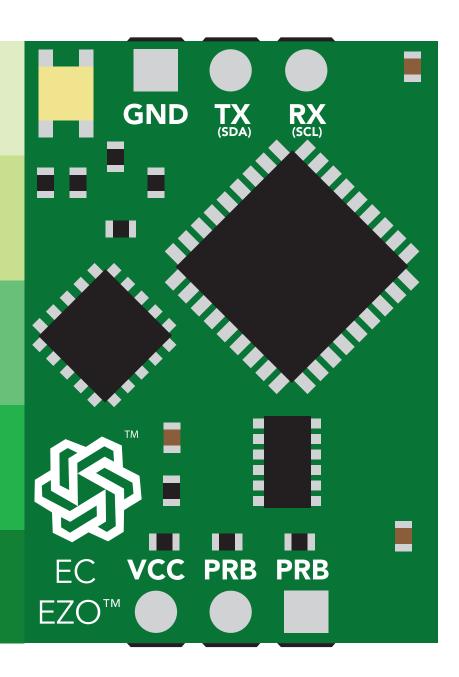
0.07 - 99.99

Resolution = 0.01μ S/cm

100.1 - 999.9

Resolution = 0.1μ S/cm

1,000 - 9,999

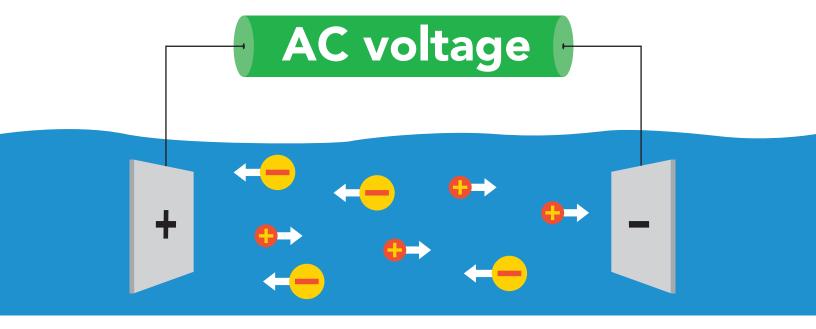

Resolution = 1.0µS/cm

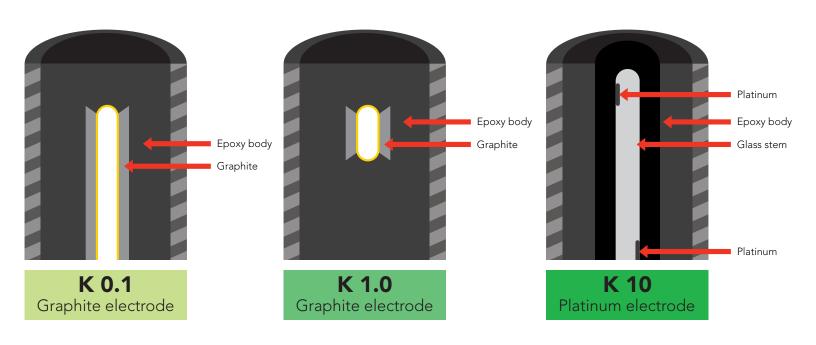
10,000 – 99,990

Resolution = 10µS/cm

100,000 - 999,900

Resolution = 100µS/cm





Operating principle

An E.C. (*electrical conductivity*) probe measures the electrical conductivity in a solution. It is commonly used in hydroponics, aquaculture and freshwater systems to monitor the amount of nutrients, salts or impurities in the water.

Inside the conductivity probe, two electrodes are positioned opposite from each other, an AC voltage is applied to the electrodes causing cations to move to the negatively charged electrode, while the anions move to the positively electrode. The more free electrolyte the liquid contains, the higher the electrical conductivity.

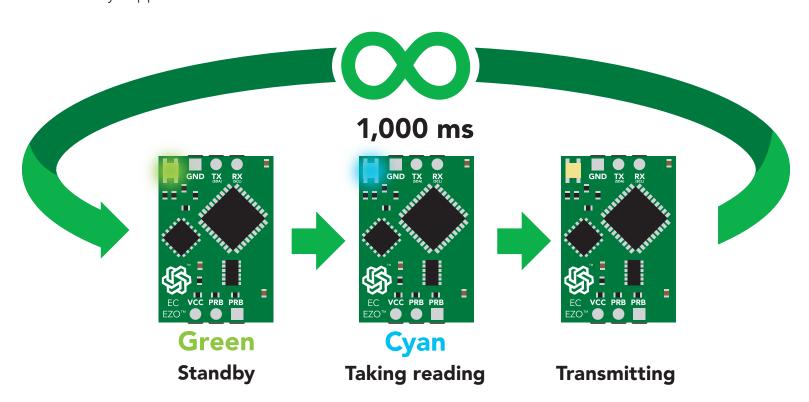
Output units

By default, EZO[™] Conductivity circuits with firmware version 2.10 and above will *only* output EC. To enable these parameters see page 35 for UART, and 62 for I²C.

The EZO™ Conductivity circuit also has the capability to read:

Conductivity = µS/cm
Total dissolved solids = ppm
Salinity = PSU (ppt) 0.00 - 42.00
Specific gravity (sea water only) = 1.00 - 1.300

These parameters must be individually enabled within the device. See page **35** to enable each parameter in UART mode, and on page **62** for I²C mode.


Once these parameters have been enabled, output will be a CSV string.

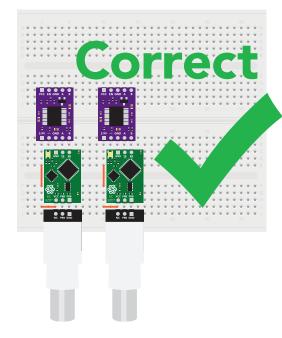
Example

EC,TDS,SAL,SG

Default LED blink pattern

This is the LED pattern for Continous Mode (default state) This can only happen when the device is in **UART** mode.

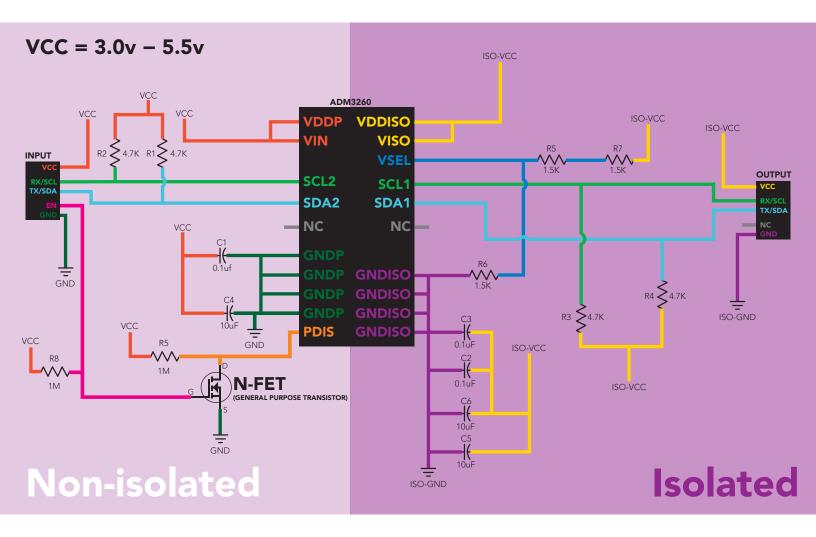
Power and data isolation


The Atlas Scientific EZO™ Conductivity circuit is a very sensitive device. This sensitivity is what gives the Conductivity circuit its accuracy. This also means that the Conductivity circuit is capable of reading micro-voltages that are bleeding into the water from unnatural sources such as pumps, solenoid valves or other probes/sensors.

When electrical noise is interfering with the Conductivity readings it is common to see rapidly fluctuating readings or readings that are consistently off. To verify that electrical noise is causing inaccurate readings, place the Conductivity probe in a cup of water by itself. The readings should stabilize quickly, confirming that electrical noise was the issue.

When reading from two EZO^{TM} Conductivity circuits, it is **strongly recommended** that they are electrically isolated from each other.

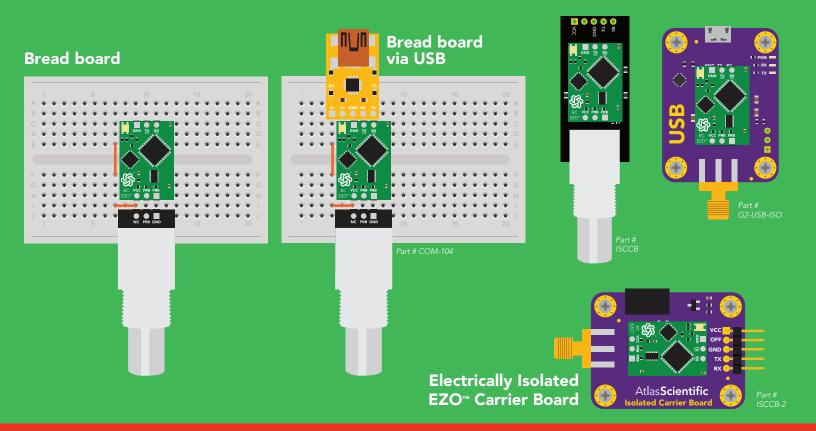
Basic EZO™ Inline Voltage Isolator

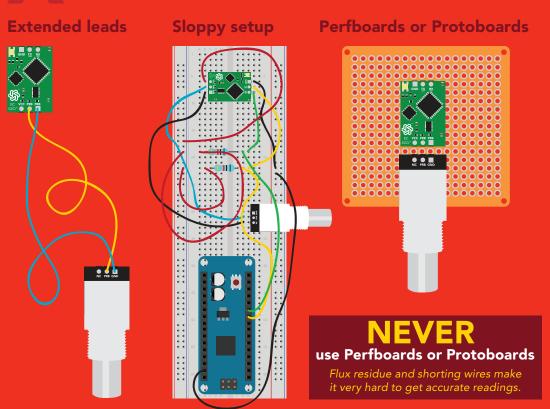

Without isolation, Conductivity readings will effect each other.

This schematic shows exactly how we isolate data and power using the ADM3260 and a few passive components. The ADM3260 can output isolated power up to 150 mW and incorporates two bidirectional data channels.

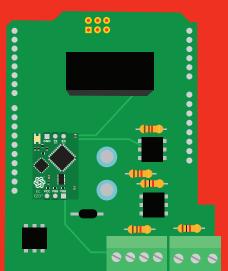
This technology works by using tiny transformers to induce the voltage across an air gap. PCB layout requires special attention for EMI/EMC and RF Control, having proper ground planes and keeping the capacitors as close to the chip as possible are crucial for proper performance. The two data channels have a $4.7k\Omega$ pull up resistor on both the isolated and non-isolated lines (R1, R2, R3, and R4) The output voltage is set using a voltage divider (R5, R6, and R,7) this produces a voltage of 3.9V regardless of your input voltage.

Isolated ground is different from non-isolated ground, these two lines should not be connected together.

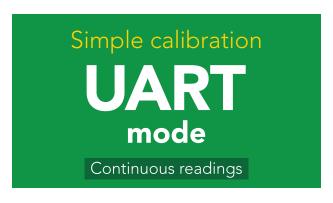


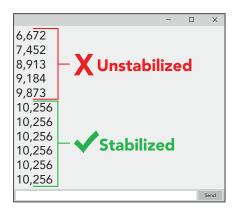

Correct wiring

Carrier board

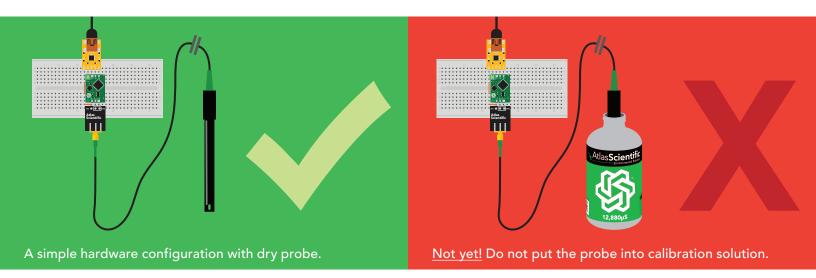

USB carrier board

Incorrect wirin


*Embedded into your device


*Only after you are familar with EZO™circuits operation

Calibration theory


The most important part of calibration is watching the readings during the calibration process.

It's easiest to calibrate the device in its default state (UART mode, with continuous readings enabled).

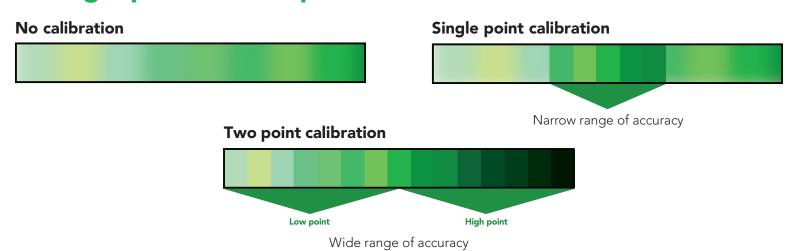
Switching the device to I²C mode after calibration will **not** affect the stored calibration. If the device must be calibrated in I²C mode be sure to **continuously request readings** so you can see the output from the probe.

1. Pre-calibration setup

Connect the dry conductivity probe and take continous readings.

2. Set probe type

If your probe \neq K 1.0 (*default*), then set the probe type by using the "K,n" command. (where n = K value of your probe) for more information, see page 33 or 60.


3. Dry calibration

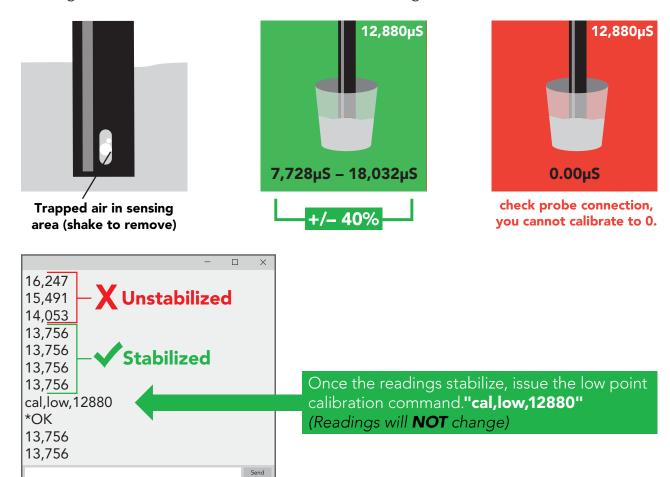
Perform a dry calibration using the command "Cal,dry" Even though you may see reading of 0.00 before issuing the "Cal,dry" command, it is still a necessary part of calibration.


$$00.00 \rightarrow$$
 "Cal,dry" \rightarrow 0.00 \checkmark Correct

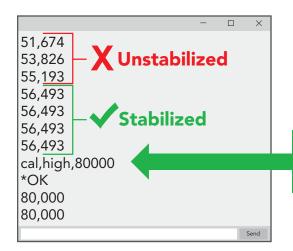
17.00 \rightarrow "Cal,dry" \rightarrow 0.00 \checkmark Also correct

4. Single point or Two point calibration

Recommended calibration points



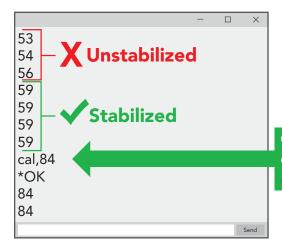
When calibrating, Atlas Scientific recommends using the above µS values. However, you can use any µS values you want.


Two point calibration - low point

Pour a small amount of the low point calibration solution into a cup. Shake the probe to make sure you do not have trapped air bubbles in the sensing area. You should see readings that are off by **1 – 40%** from the stated value of the calibration solution. Wait for readings to stabilize (small movement from one reading to the next is normal).

Two point calibration - high point

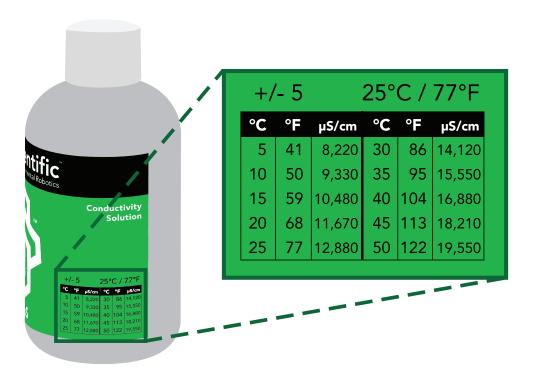
- Rinse off the probe before calibrating to the high point.
- Pour a small amount of the high point calibration solution into a cup.
- Shake the probe to remove trapped air.
- Readings may be off by +/- 40%
- Wait for readings to stabilize.



Once the readings stabilize, issue the high point calibration command."cal,high,80000" (Readings will change, calibration complete).

Single point calibration

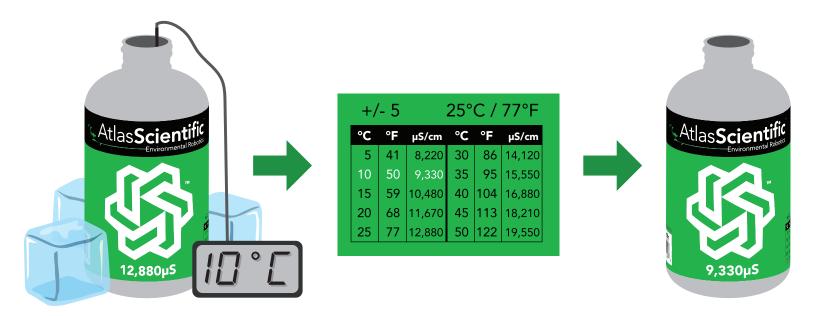
- Pour a small amount of calibration solution into a cup (μS value of your choice).
- Shake the probe to remove trapped air.
- Readings may be off by +/- 40%
- Wait for readings to stabilize.

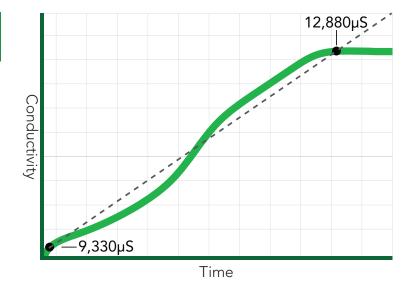


Once the readings stabilize, issue the single point calibration command."cal,n" where n = any value. (Readings will change, calibration complete).

Temperature compensation during calibration

Temperature has a significant effect on conductivity readings. The EZO™ Conductivity circuit has its temperature compensation set to 25° C as the default. At no point should you change the default temperature compensation during calibration.


If the solution is \pm 6° C (or more), refer to the chart on the bottle, and calibrate to that value.


Temperature compensation example

For this example, we brought the temperature of the solution down to 10° C. Referring to chart on the bottle, you can see the value you should calibrate to is 9,330µS.

Over time, the readings will normalize as the solution warms to 25° C.

See pages **34** or **61** for more information.

Default state

UART mode

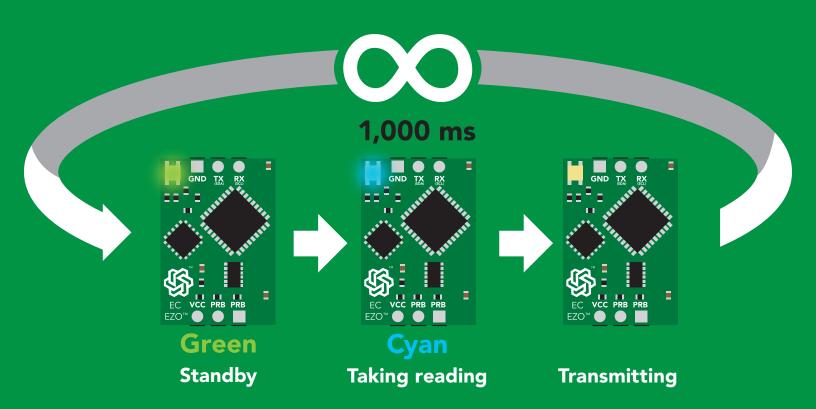
Baud

Readings

Units

Speed

LED


9,600

continuous

μS/cm

1 reading per second

on

Available data protocols

UART

Default

1²C

X Unavailable data protocols

SPI

Analog

RS-485

Mod Bus

4-20mA

UART mode

Settings that are retained if power is cut

Baud rate Calibration

Continuous mode

Device name

Enable/disable parameters

Enable/disable response codes

Hardware switch to I²C mode

LED control

Protocol lock

Software switch to I²C mode

Settings that are **NOT** retained if power is cut

Find Sleep mode Temperature compensation

UART mode

8 data bits 1 stop bit

no parity no flow control

Baud 300

1,200

2,400

9,600 default

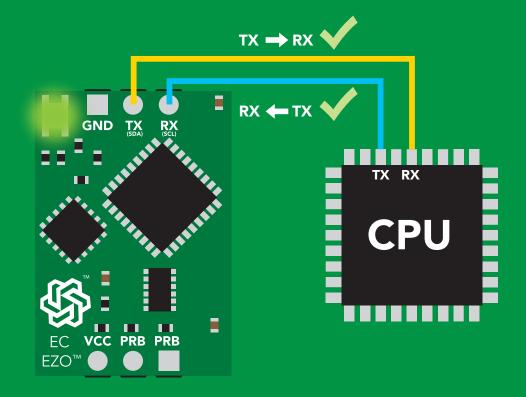
19,200

38,400

57,600

115,200

Data in


Data out

Vcc

3.3V - 5.5V

Data format

Reading

Conductivity = $\mu S/cm$

Total dissolved solids = ppm Salinity = PSU (ppt) 0.00 - 42.00

Specific gravity (sea water only) = 1.00 - 1.300

EC,TDS,SAL,SG Units

ASCII Encoding

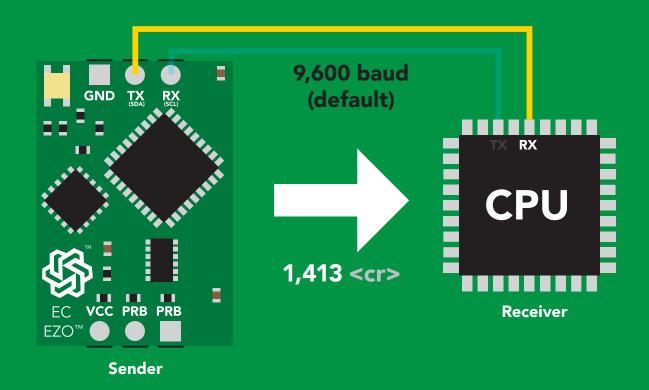
Format string **Terminator**

Data type

Decimal places 3

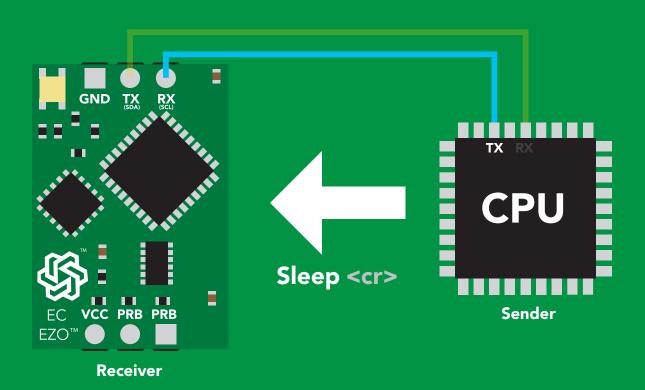
Smallest string 3 characters

Largest string


carriage return floating point

40 characters

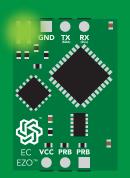
Receiving data from device

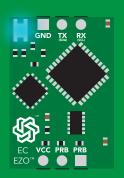


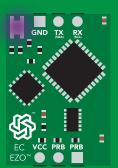
Advanced

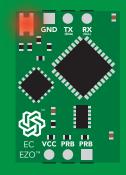
ASCII: 1 31 2C 34 31 33 49 44 52 49 51 Dec:

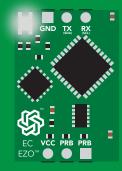
Sending commands to device




Advanced


LED color definition


Green **UART** standby


Cyan **Taking reading**

Changing baud rate

Command not understood

White Find

LED ON +2.5 mA 3.3V +1 mA

UART mode command quick reference

All commands are ASCII strings or single ASCII characters.

All communes c	are Abon burnigs or single Abon thandeters.		
Command	Function		Default state
Baud	change baud rate	pg. 41	9,600
С	enable/disable continuous reading	pg. 27	enabled
Cal	performs calibration	pg. 29	n/a
Export	export calibration	pg. 31	n/a
Factory	enable factory reset	pg. 43	n/a
Find	finds device with blinking white LED	pg. 26	n/a
i	device information	pg. 37	n/a
I2C	change to I ² C mode	pg. 44	not set
Import	import calibration	pg. 32	n/a
K	Set probe type	pg. 33	K 1.0
L	enable/disable LED	pg. 25	enabled
Name	set/show name of device	pg. 36	not set
0	enable/disable parameters	pg. 35	all enabled
Plock	enable/disable protocol lock	pg. 42	disabled
R	returns a single reading	pg. 28	n/a
Sleep	enter sleep mode/low power	pg. 40	n/a
Status	retrieve status information	pg. 39	enable
Т	temperature compensation	pg. 34	25°C
TDS	change the TDS conversion factor	pg. 30	n/a
*OK	enable/disable response codes	pg. 38	enable

LED control

Command syntax

L,1 <cr> LED on default

L,0 <cr> LED off

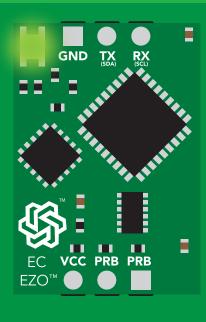
L,? <cr> LED state on/off?

Example

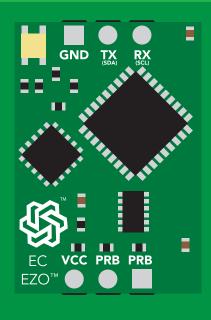
Response

L,1 <cr>

*OK <cr>


L,0 <cr>

*OK <cr>>


L,? <cr>

?L,1 <cr> or ?L,0 <cr>

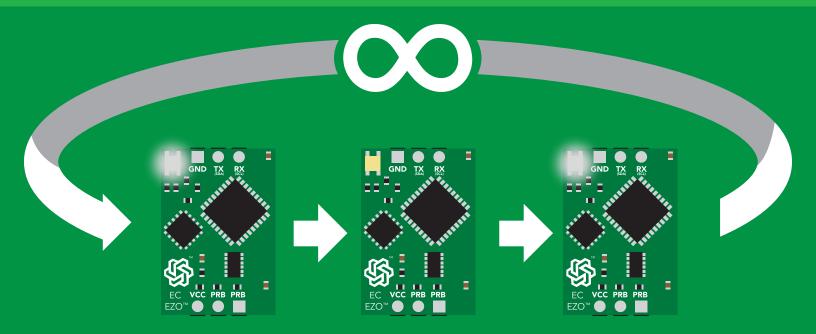
*OK <cr>

L,1

L,0

Find

Command syntax


This command will disable continuous mode Send any character or command to terminate find.

LED rapidly blinks white, used to help find device

Example Response

Find <cr>

*OK <cr>>

Continuous reading mode

Command syntax

C,1 <cr> enable continuous readings once per second default

C,n <cr> continuous readings every n seconds (n = 2 to 99 sec)

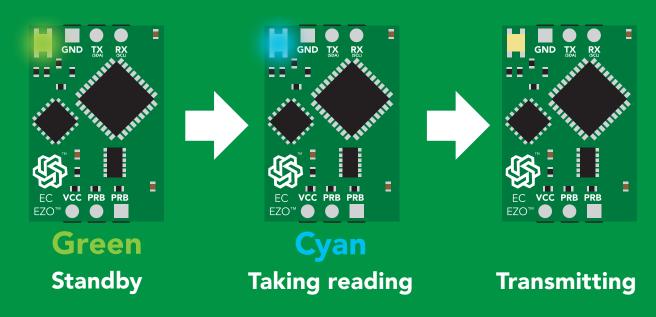
C,0 <cr> disable continuous readings

C,? <cr> continuous reading mode on/off?

Example	Response
C,1 <cr></cr>	*OK <cr> EC,TDS,SAL,SG (1 sec) <cr> EC,TDS,SAL,SG (2 sec) <cr> EC,TDS,SAL,SG (3 sec) <cr></cr></cr></cr></cr>
C,30 <cr></cr>	*OK <cr> EC,TDS,SAL,SG (30 sec) <cr> EC,TDS,SAL,SG (60 sec) <cr> EC,TDS,SAL,SG (90 sec) <cr></cr></cr></cr></cr>
C,0 <cr></cr>	*OK <cr></cr>
C,? <cr></cr>	?C,1 <cr> or ?C,0 <cr> or ?C,30 <cr> *OK <cr></cr></cr></cr></cr>

Single reading mode

Command syntax


R <cr> takes single reading

Example

Response

R <cr>

1,413 <cr> *OK <cr>

Calibration

Command syntax

Dry calibration must always be done first!

Cal, dry dry calibration <cr>

single point calibration, where n = any valueCal.n <cr>

Cal,low,n low end calibration, where n = any value <cr>

Cal,high,n <cr> high end calibration, where n = any value

Cal, clear delete calibration data <cr>

Cal,? device calibrated? <cr>

Example

Response

Cal, dry <cr>

*OK <cr>

Cal,84 <cr>

*OK <cr>

Cal, low, 12880 <cr>

*OK <cr>

Cal, high, 80000

*OK <cr>

Cal, clear < cr>

*OK <cr>

Cal,? <cr>

?CAL,0 <cr> or ?CAL,1 <cr> or ?CAL,2

*OK <cr>

One point calibration:

Step 1. "cal,dry" Step 2. "cal,n"

Calibration complete!

Two point calibration:

Step 1 "cal,dry"

Step 2 "cal,low,n"

Step 3 "cal,high.n"

Calibration complete!

Changing the TDS (ppm) conversion factor

Command syntax

There are several different conversion factors used to read TDS(ppm). For some applications, it may be necessary to use a conversion factor other than the default value of 0.54

```
TDS,n <cr> set custom conversion factor, n = any value between 0.01 – 1.00
```

TDS,? <cr> conversion factor being used

Example

TDS,? <cr>

R <cr>

Response

Common conversion factors

NaCl	0.47 - 0.50
KCL	0.50 - 0.57
"442"	0.65 - 0.85

Formula

EC x conversion factor = TDS

Export calibration

Command syntax

Export: Use this command to download calibration settings

calibration string info Export,? <cr>

export calibration string from calibrated device **Export** <cr>

Example

Export,? <cr>

Response

10,120 <cr>

Response breakdown 10, 120

of strings to export # of bytes to export

Export strings can be up to 12 characters long, and is always followed by <cr>

Export <cr>

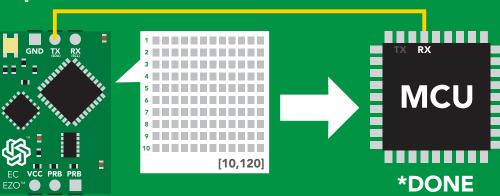
Export <cr>

(**7** more)

Export <cr>

Export <cr>

59 6F 75 20 61 72 <cr> (1 of 10)


65 20 61 20 63 6F <cr> (2 of 10)

6F 6C 20 67 75 79 <cr> (10 of 10)

*DONE

Disabling *OK simplifies this process

Export <cr>

Import calibration

Command syntax

Import: Use this command to upload calibration settings to one or more devices.

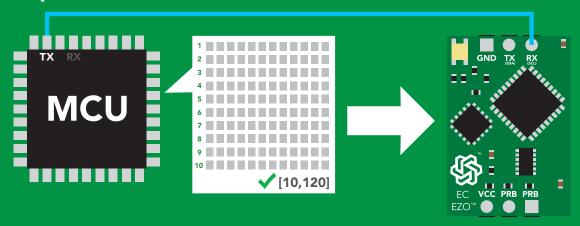
import calibration string to new device Import,n <cr>

Example

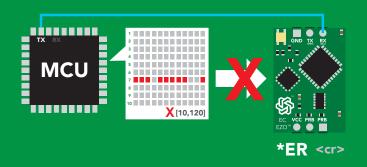
Import, 59 6F 75 20 61 72 <cr> (1 of 10)

Import, 65 20 61 20 63 6F <cr> (2 of 10)

Import, 6F 6C 20 67 75 79 <cr> (10 of 10)</ri>


Response

*OK <cr>


*OK <cr>

*OK <cr>

Import,n <cr>

*OK <cr> system will reboot

* If one of the imported strings is not correctly entered, the device will not accept the import, respond with *ER and reboot.

Setting the probe type

Command syntax

K 1.0 is the default value

K,n <cr> n = any value; floating point in ASCII

K,? <cr> probe K value?</cr>			
Example	Response		
K,10 <cr></cr>	*OK <cr></cr>		
K,? <cr></cr>	?K,10 <cr> *OK <cr></cr></cr>		

K 1.0

K 10

K 0.1

Temperature compensation

Command syntax

Default temperature = 25°C Temperature is always in Celsius Temperature is not retained if power is cut

n = any value; floating point or int T,n

compensated temperature value? **T,?**

set temperature compensation and take a reading* RT,n <cr>

> This is a new command for firmware V2.13

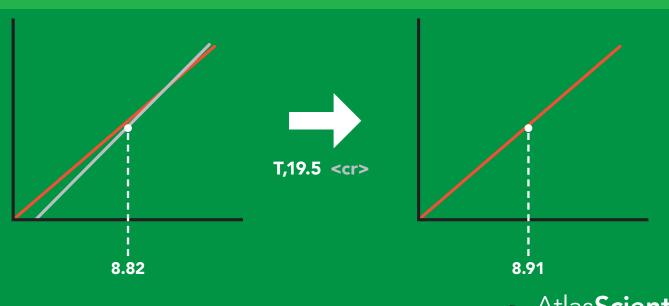
Example

Response

T,19.5 <cr>

*OK <cr>

RT,19.5 <cr>


*OK <cr>

8.91 <cr>

T,? <cr>

?T,19.5 <cr>

*OK <cr>

Enable/disable parameters from output string

Command syntax

O, [parameter],[1,0] <cr> enable or disable output parameter <cr> enabled parameter? 0,?

Example

O,EC,1 / O,EC,0 <cr>

O,TDS,1 / O,TDS,0 <cr>

O.S.1 / O,S,0 <cr>

O,SG,1 / O,SG,0

O,? <cr>

Response

*OK <cr> enable / disable conductivity

*OK <cr> enable / disable total dissolved solids

*OK <cr> enable / disable salinity

*OK <cr> enable / disable specific gravity

?,O,EC,TDS,S,SG <cr> if all are enabled

Parameters

EC conductivity

total dissolved solids **TDS**

salinity S

specific gravity SG

Followed by 1 or 0

enabled

disabled

* If you disable all possible data types your readings will display "no output".

Naming device

Command syntax

Do not use spaces in the name

Name,n <cr> set name

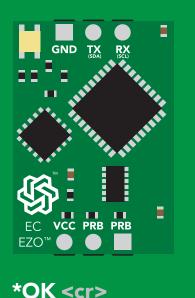
Name,? <cr> show name

n = 6 7 8 9 10 11 12 13 14 15 16

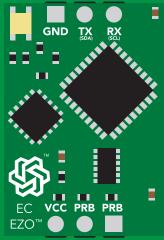
Up to 16 ASCII characters

Example

Name,zzt <cr>


*OK <cr>

Name,? <cr>


?Name,zzt <cr> *OK <cr>>

Response

Name,zzt

Name,?

Name,zzt <cr>

Device information

Command syntax

i <cr> device information

Example

Response

i <cr>

?i,EC,2.10 <cr> *OK <cr>

Response breakdown

2.10 ?i, EC, Device Firmware

Response codes

Command syntax

*OK,1 <cr> enable response

default

*OK,0 <cr> disable response

*OK,? <cr> response on/off?

Example

Response

R <cr>

1,413 <cr>

*OK <cr>

*OK,0 <cr>

no response, *OK disabled

R <cr>

1,413 <cr> *OK disabled

*OK,? <cr>

?*OK,1 <cr> or ?*OK,0 <cr>

Other response codes

unknown command *ER

*OV over volt (VCC>=5.5V)

*UV under volt (VCC<=3.1V)

*RS reset

*RE boot up complete, ready

entering sleep mode *SL

*WA wake up These response codes cannot be disabled

Reading device status

Command syntax

Status <cr> voltage at Vcc pin and reason for last restart

Example

Response

Status <cr>

?Status, P, 5.038 < cr>

*OK <cr>

Response breakdown

?Status,

5.038

Reason for restart

Voltage at Vcc

Restart codes

powered off

software reset

brown out

watchdog W

unknown

Sleep mode/low power

Command syntax

Send any character or command to awaken device.

Sleep <cr> enter sleep mode/low power

Example

Response

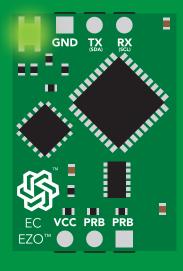
Sleep <cr>

*OK <cr>

*SL <cr>

Any command

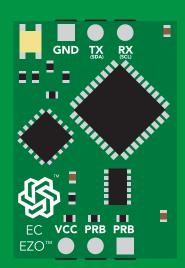
*WA <cr> wakes up device


5V

SLEEP STANDBY

18.14 mA 0.7 mA

3.3V


16.85 mA 0.4 mA

Standby 18.14 mA

Sleep <cr>

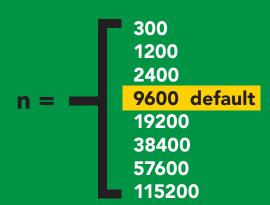
Sleep $0.7 \, \text{mA}$

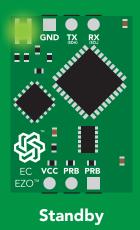
Change baud rate

Command syntax

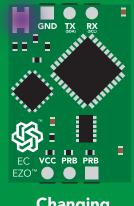
Baud,n <cr> change baud rate

Example

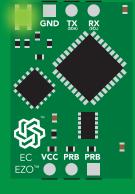

Response


Baud, 38400 < cr>

*OK <cr>


Baud,? <cr>

?Baud,38400 <cr> *OK <cr>



Changing baud rate

*OK <cr>

Standby

Protocol lock

Command syntax

Locks device to UART mode.

Plock,1 <cr> enable Plock

default Plock,0 <cr> disable Plock

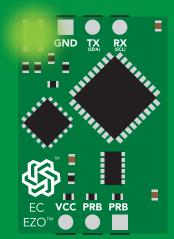
Plock,? <cr> Plock on/off?

Example

Response

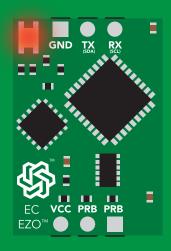
Plock,1 <cr>

*OK <cr>

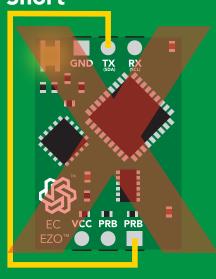

Plock,0 <cr>

*OK <cr>

Plock,? <cr>


?Plock,1 <cr> or ?Plock,0 <cr>

Plock,1


*OK <cr>

12C,100

cannot change to I²C *ER <cr>

Short

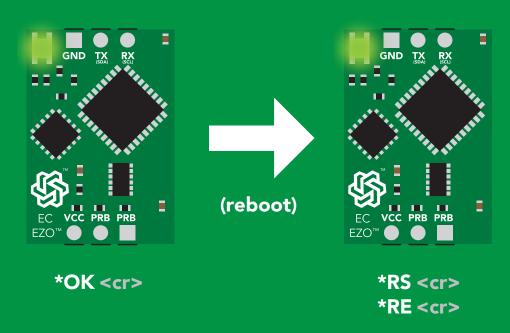
cannot change to I²C

Factory reset

Command syntax

Clears calibration LED on "*OK" enabled

Factory <cr> enable factory reset


Example

Response

Factory <cr>

*OK <cr>>

Factory <cr>

Baud rate will not change

Change to I²C mode

Command syntax

Default I²C address 100 (0x64)

I2C,n <cr> sets I2C address and reboots into I2C mode

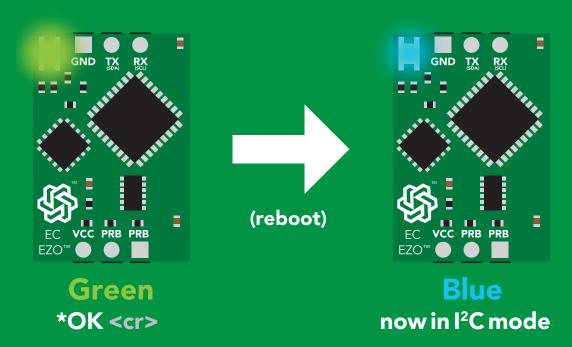
n = any number 1 - 127

Example

Response

12C,100 <cr>

*OK (reboot in I²C mode)

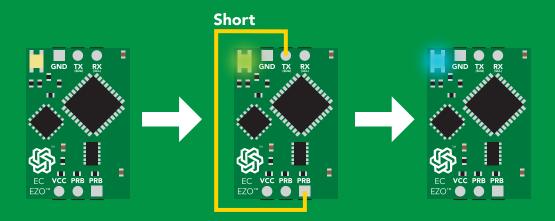

Wrong example

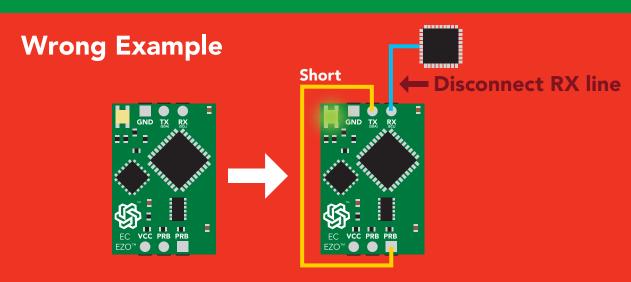
Response

12C,139 <cr> n ≯ 127

*ER <cr>

I2C,100




Manual switching to I²C

- **Disconnect ground (power off)**
- Disconnect TX and RX
- Connect TX to the right PRB
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Green to Blue
- Disconnect ground (power off)
- Reconnect all data and power

Manually switching to I²C will set the I²C address to 100 (0x64)

Example

l²C mode

The I²C protocol is considerably more complex than the UART (RS-232) protocol. Atlas Scientific assumes the embedded systems engineer understands this protocol.

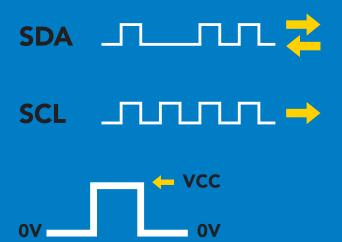
To set your EZO™ device into I²C mode click here

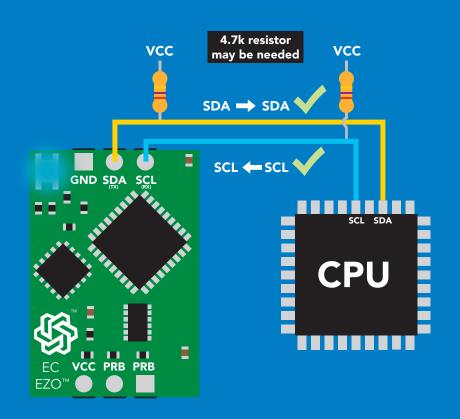
Settings that are retained if power is cut

Calibration
Change I²C address
Enable/disable parameters
Hardware switch to UART mode
LED control
Protocol lock
Software switch to UART mode

Settings that are **NOT** retained if power is cut

Find Sleep mode Temperature compensation


I²C mode


I²C address (0x01 - 0x7F)

100 (0x64) default

3.3V - 5.5VVcc

Clock speed 100 - 400 kHz

Data format

Reading

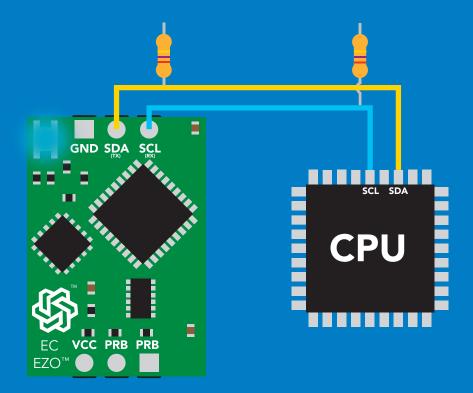
Conductivity = µS/cm Total dissolved solids = ppm Salinity = PSU (ppt) 0.00 - 42.00**Specific gravity** (sea water only) = 1.00 - 1.300

Units **Encoding** EC,TDS,SAL,SG

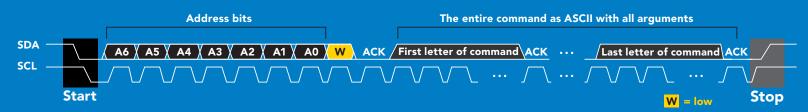
ASCII

Format Data type **Decimal places 3** Smallest string 3 characters Largest string

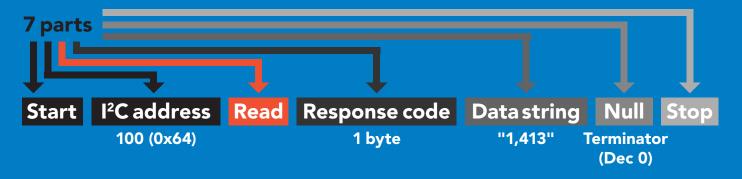
string floating point

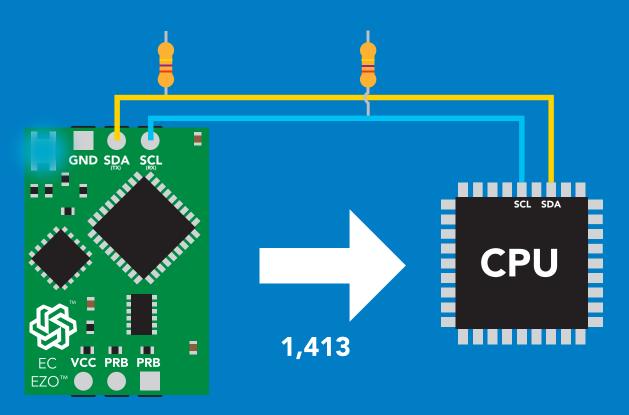

40 characters

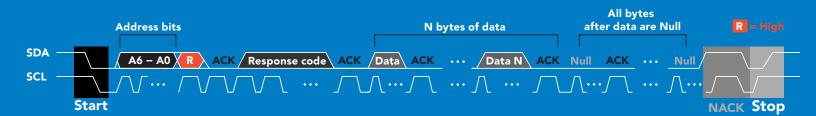
Sending commands to device



Example

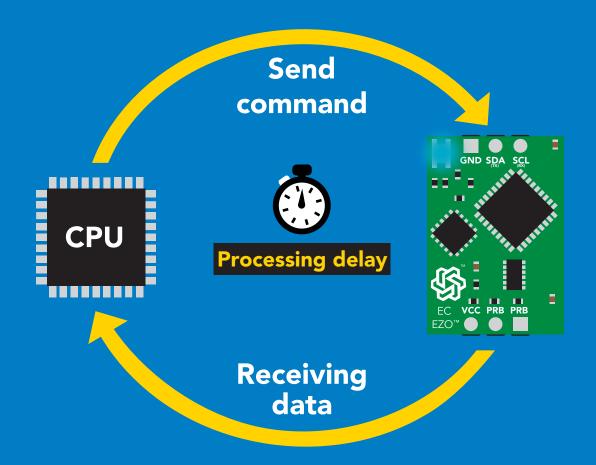



Advanced



Requesting data from device

Advanced



Response codes

After a command has been issued, a 1 byte response code can be read in order to confirm that the command was processed successfully.

Reading back the response code is completely optional, and is not required for normal operation.

Example

I2C_start;

I2C address:

I2C_write(EZO_command);

I2C_stop;

delay(300);

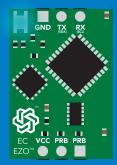
I2C start; I2C address; Char[] = I2C_read; I2C_stop;

The response code will always be 254, if you do not wait for the processing delay.

Response codes

Single byte, not string

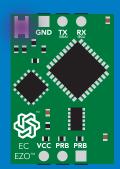
no data to send 255


254 still processing, not ready

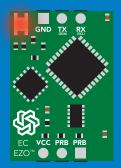
2 syntax error

successful request

LED color definition



I²C standby



Green

Taking reading

Changing I²C address

Command not understood

White

Find

LED ON **5V** +2.5 mA 3.3V +1 mA

I²C mode command quick reference

All commands are ASCII strings or single ASCII characters.

Command	Function	
Baud	switch back to UART mode	pg. 70
Cal	performs calibration	pg. 56
Export	export calibration	pg. 58
Factory	enable factory reset	pg. 69
Find	finds device with blinking white LED	pg. 54
i	device information	pg. 64
I2C	change I ² C address	pg. 68
Import	import calibration	pg. 59
K	set probe type	pg. 60
L	enable/disable LED	pg. 53
Name	set/show name of device	pg. 63
0	enable/disable parameters	pg. 62
Plock	enable/disable protocol lock	pg. 67
R	returns a single reading	pg. 55
Sleep	enter sleep mode/low power	pg. 66
Status	retrieve status information	pg. 65
т	temperature compensation	pg. 61
TDS	change the TDS conversion factor	pg. 57

LED control

Command syntax

300ms processing delay

L,1 LED on default

L,0 **LED** off

L,? LED state on/off?

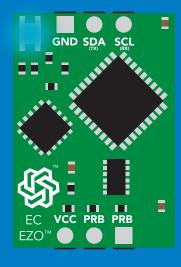
Example

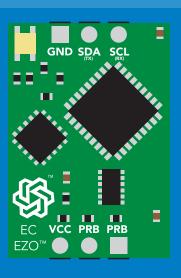
Response

L,1

L,0

L,?





L,1

L,0

Find

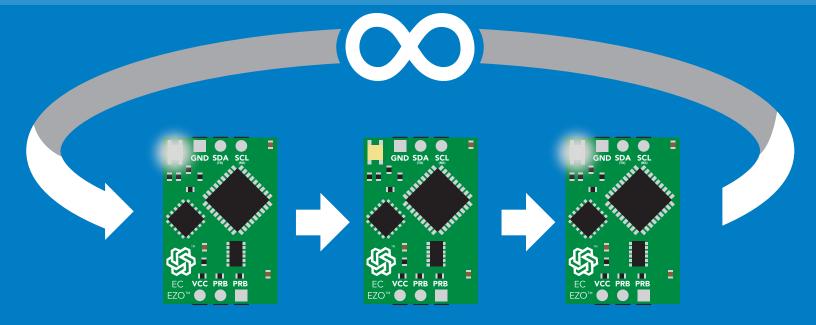
Command syntax

This command will disable continuous mode Send any character or command to terminate find.

Find

LED rapidly blinks white, used to help find device

Example


Response

Find

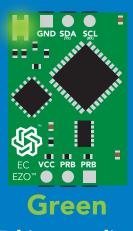
Taking reading

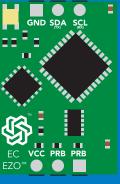
Command syntax

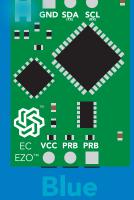
return 1 reading R

Example

Response


R





Transmitting

Standby

Calibration

600ms (processing delay

Command syntax

Dry calibration must always be done first!

Cal, dry dry calibration

Cal,n single point calibration, where n = any value

Cal,low,n low end calibration, where n = any value

high end calibration, where n = any value

Cal, clear delete calibration data

Cal,? device calibrated?

Example

Cal, high, n

Cal, dry

Cal,84

Cal, low, 12880

Cal, high, 80000

Cal, clear

Cal.?

Response

ASCII

One point calibration:

Step 1. "cal,dry" Step 2. "cal,n"

Calibration complete!

Two point calibration:

Step 1 "cal, dry" Step 2 "cal,low,n"

Step 3 "cal,high,n"

Calibration complete!

Changing the TDS (ppm) conversion factor

300ms processing delay

Command syntax

There are several different conversion factors used to read TDS(ppm). For some applications, it may be necessary to use a conversion factor other than the default value of 0.54

TDS,n

set custom conversion factor, n = any value between 0.01 - 1.00

TDS,?

conversion factor being used

Example

Response

TDS,?

?TDS,0.54 **ASCII**

R

100,54

TDS, 0.46

R

Dec

100,460

Common conversion factors

0.47 - 0.50NaCl

0.50 - 0.57KCL

"442" 0.65 - 0.85

Formula

EC x conversion factor = TDS

Export calibration

300ms processing delay

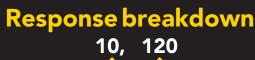
Command syntax

Export: Use this command to download calibration settings

calibration string info Export,?

export calibration string from calibrated device **Export**

Example


Response

Export,?

of strings to export # of bytes to export

Export strings can be up to 12 characters long

Export

Export

(7 more)

Export

Export

(1 of 10)

65 20 61 20 63 6F

(2 of 10)

6F 6C 20 67 75 79

(10 of 10)

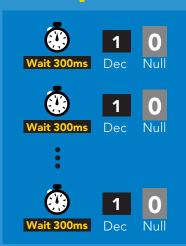
Import calibration

300ms processing delay

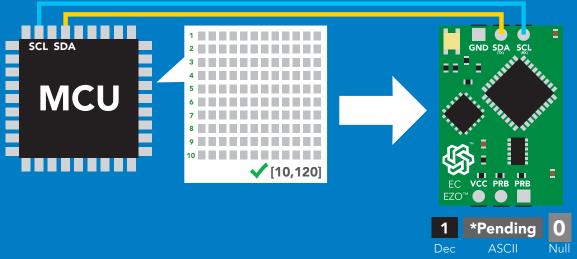
Command syntax

Import: Use this command to upload calibration settings to one or more devices.

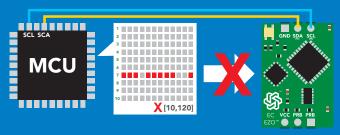
import calibration string to new device Import,n


Example

Import, 59 6F 75 20 61 72 (1 of 10)


Import, 65 20 61 20 63 6F (2 of 10)

Import, 6F 6C 20 67 75 79 (10 of 10)

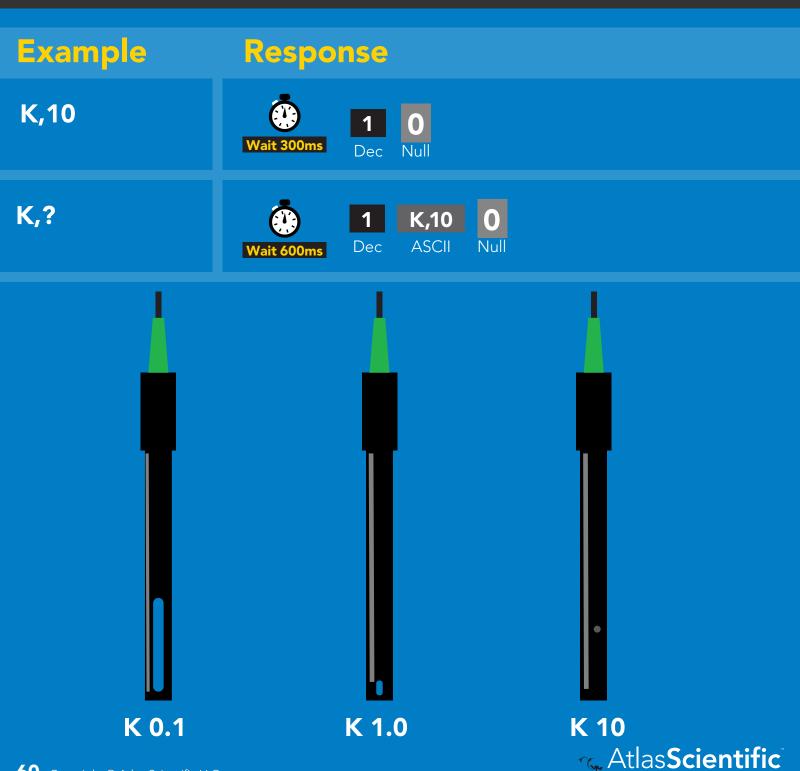

Response

Import,n

system will reboot

* If one of the imported strings is not correctly entered, the device will not accept the import and reboot.

Setting the probe type


Command syntax

300ms processing delay

n = any value; floating point in ASCII K,n

K 1.0 is the default value

K,? probe K value?

Temperature compensation

Command syntax

Default temperature = 25°C Temperature is always in Celsius Temperature is not retained if power is cut

n = any value; floating point or int 300ms @ processing delay T,n

T,? compensated temperature value?

set temperature compensation and take a reading* RT,n

> This is a new command for firmware V2.13

Example Response T,19.5 RT,19.5 **T,?** ?T,19.5

8.91

8.82

Enable/disable parameters from output string

Command syntax

300ms processing delay

O, [parameter],[1,0] Ο,?

enable or disable output parameter enabled parameter?

Example

O,EC,0 O,EC,1 /

O,TDS,1 / O,TDS,0

0,5,1 **O,S,0**

O,SG,1 / O,SG,0

0,?

Response

enable / disable conductivity

enable / disable total dissolved solids

enable / disable salinity

enable / disable specific gravity

?,O,EC,TDS,S,SG 0 if all are enabled

Parameters

conductivity EC

total dissolved solids TDS

salinity S

SG specific gravity

Followed by 1 or 0

enabled disabled 0

* If you disable all possible data types your readings will display "no output".

Naming device

300ms (processing delay

Command syntax

Do not use spaces in the name

Name, n

Name,?

set name

show name

n = 8 9 10 11 12 13 14 15 16

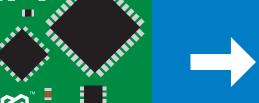
Up to 16 ASCII characters

Example

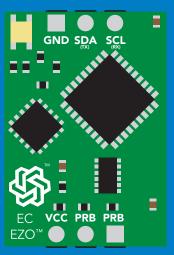
Response

Name,zzt

Name,?



?Name,zzt **ASCII**



Name,zzt

GND SDA SCL

Name,?

?Name,zzt

Device information

Command syntax

300ms processing delay

device information

Example

Response

i

Response breakdown

?i, EC, Device

2.10 **Firmware**

Reading device status

Command syntax

voltage at Vcc pin and reason for last restart

Example

Response

Status

?Status,P,5.038

ASCII

Response breakdown

?Status,

Reason for restart

5.038

Voltage at Vcc

Restart codes

- powered off
- software reset S
- brown out
- watchdog W
- U unknown

Sleep mode/low power

Command syntax

enter sleep mode/low power Sleep

Send any character or command to awaken device.

Example

Response

Sleep

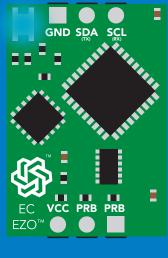
no response

Do not read status byte after issuing sleep command.

Any command

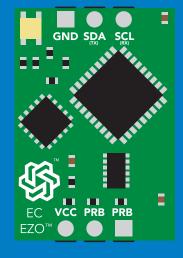
wakes up device

5V


STANDBY SLEEP

18.14 mA

 $0.7 \, \text{mA}$


3.3V

16.85 mA 0.4 mA

Standby

Sleep

Protocol lock

Command syntax

300ms processing delay

Plock,1 enable Plock

disable Plock Plock,0

default

Plock,? Plock on/off? Locks device to I²C mode.

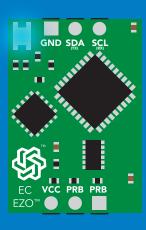
Example

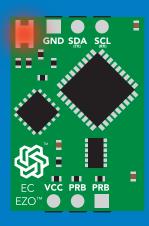
Response

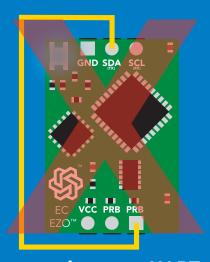
Plock,1

Plock,0

Plock,?






Plock,1

Baud, 9600

cannot change to **UART**

cannot change to UART

I²C address change

Command syntax

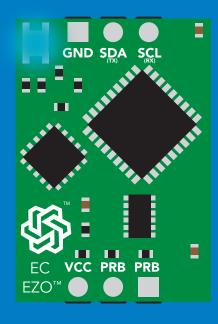
sets I²C address and reboots into I²C mode I2C,n

Example

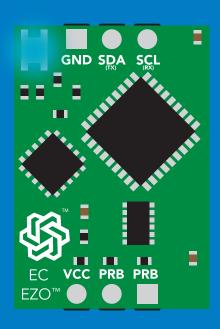
Response

I2C,101

device reboot


Warning!

Changing the I²C address will prevent communication between the circuit and the CPU until your CPU is updated with the new I²C address.


Default I²C address is 100 (0x64).

n = any number 1 - 127

I2C,101

Factory reset

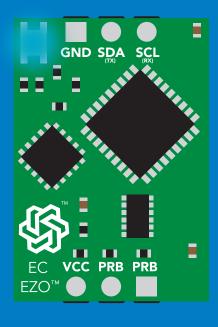
Command syntax

Factory reset will not take the device out of I²C mode.

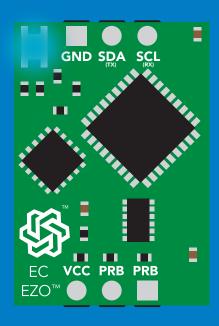
Factory enable factory reset

I²C address will not change

Example


Response

Factory

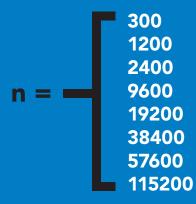

device reboot

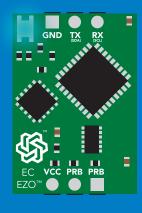
Clears calibration LED on Response codes enabled

Factory

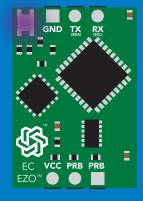
Change to UART mode

Command syntax

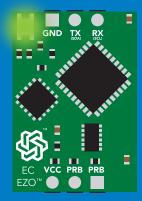

Baud,n switch from I²C to UART


Example

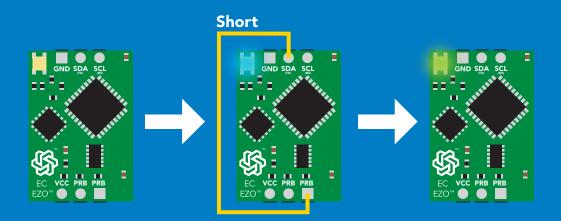
Response

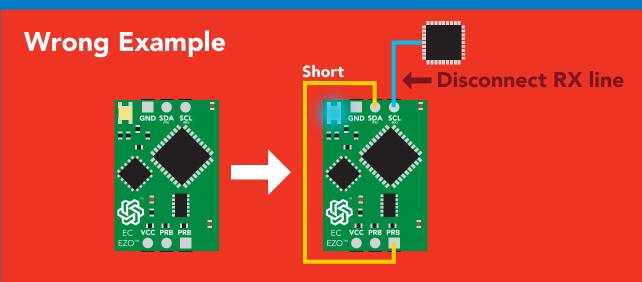

Baud, 9600

reboot in UART mode

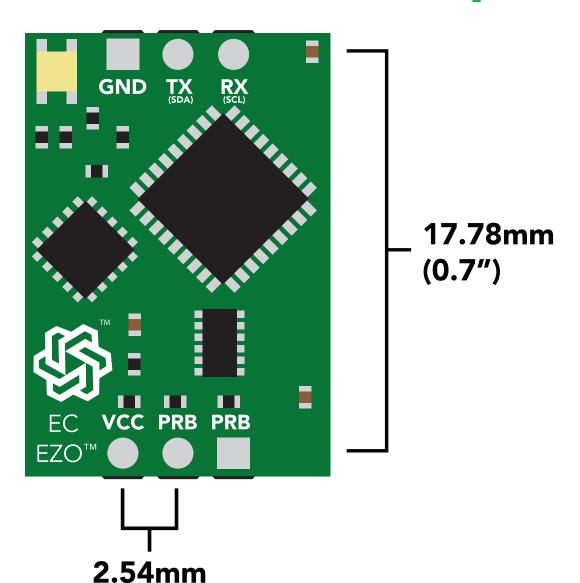


Changing to UART mode



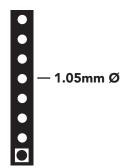


Manual switching to UART

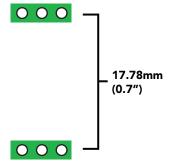

- **Disconnect ground (power off)**
- Disconnect TX and RX
- Connect TX to the right PRB
- Confirm RX is disconnected
- Connect ground (power on)
- Wait for LED to change from Blue to Green
- Disconnect ground (power off)
- Reconnect all data and power

Example

EZO[™] circuit footprint



In your CAD software, place a 8 position header.


(0.1")

Place a 3 position header at both top and bottom of the 8 position.

Delete the 8 position header. The two 3 position headers are now 17.78mm (0.7") apart from each other.

Datasheet change log

Datasheet V 6.2

Added new command:

"TDS,n" Changing the TDS (ppm) conversion factor on pages 30 (UART) & 57 (12C).

Datasheet V 6.1

Corrected typos within the datasheet.

Datasheet V 6.0

Changed the K value range from 0.1 to 0.01 on pg 5.

Datasheet V 5.9

Moved Default state to pg 17.

Datasheet V 5.8

Revised conductivity probe range information on pg 5.

Datasheet V 5.7

Revised response for the sleep command in UART mode on pg 39.

Datasheet V 5.6

Added more information on the Export calibration and Import calibration commands.

Datasheet V 5.5

Revised calibration theory pages, added information on temperature compensation on pg. 15, moved data isolation to pg 9, and correct wiring to pg 11.

Datasheet V 5.4

Revised isolation schematic on pg. 13

Datasheet V 5.3

Added new command:

"RT,n" for Temperature compensation located on pages 30 (UART) & 55 (I²C). Added firmware information to Firmware update list.

Datasheet V 5.2

Revised calibration information on pages 27 & 52.

Datasheet change log

Datasheet V 5.1

Added more information about temperature compensation on pages 30 & 55.

Datasheet V 5.0

Changed "Max rate" to "Response time" on cover page.

Datasheet V 4.9

Removed note from certain commands about firmware version. Added steps to calibration command pages 27 (UART) and 52 (I²C).

Datasheet V 4.8

Revised definition of response codes on pg 46.

Datasheet V 4.7

Revised cover page art.

Datasheet V 4.6

Updated calibration processing delay time on pg.52.

Datasheet V 4.5

Revised Enable/disable parameters information on pages 31 & 56.

Datasheet V 4.4

Updated High point calibration info on page 11.

Datasheet V 4.3

Updated calibration info on pages 27 (UART) and 52 (I²C).

Datasheet V 4.2

Revised Plock pages to show default value.

Datasheet V 4.1

Corrected I²C calibration delay on pg. 52.

Datasheet V 4.0

Revised entire datasheet.

Firmware updates

V1.0 – Initial release (April 17, 2014)

V1.1 – (June 2, 2014)

- Change specific gravity equation to return 1.0 when the uS reading is < 1000 (previously returned 0.0)
- Change accuracy of specific gravity from 2 decimal places to 3 decimal places
- Don't save temperature changes to EEPROM

V1.2 – (Aug 1, 2014)

Baud rate change is now a long, purple blink

V1.5 – Baud rate change (Nov 6, 2014)

• Change default baud rate to 9600

V1.6 - I2C bug (Dec 1, 2014)

• Fixed I²C bug where the circuit may inappropriately respond when other I2C devices are connected

V1.8 – Factory (April 14, 2015)

Changed "X" command to "Factory"

V1.95 – Plock (March 31, 2016)

Added protocol lock feature "Plock"

V1.96 – EEPROM (April 26, 2016)

• Fixed bug where EEPROM would get erased if the circuit lost power 900ms into startup This would cause the EZO circuit to revert back to UART mode if set to I2C

V2.10 – (April 12, 2017)

- Added "Find" command.
- Added "Export/import" command.
- Modified continuous mode to be able to send readings every "n" seconds.
- Default output changed from CSV string of 4 values to just conductivity; Other values must be enabled

V2.11 – (April 28, 2017)

• Fixed "Sleep"bug, where it would draw excessive current.

V2.12 – (May 9, 2017)

• Fixed bug in sleep mode, where circuit would wake up to a different I²C address.

V2.13 – (July 16, 2018)

Added "RT" command to Temperature compensation

V2.14 – (Nov 26, 2019)

• The K value range has been extended to 0.01

Warranty

Atlas Scientific™ Warranties the EZO™ class Conductivity circuit to be free of defect during the debugging phase of device implementation, or 30 days after receiving the EZO™class Conductivity circuit (which ever comes first).

The debugging phase

The debugging phase as defined by Atlas Scientific[™] is the time period when the EZO[™] class Conductivity circuit is inserted into a bread board, or shield. If the EZO™ class Conductivity circuit is being debugged in a bread board, the bread board must be devoid of other components. If the EZO™ class Conductivity circuit is being connected to a microcontroller, the microcontroller must be running code that has been designed to drive the EZO™ class Conductivity circuit exclusively and output the EZO™ class Conductivity circuit data as a serial string.

It is important for the embedded systems engineer to keep in mind that the following activities will void the EZO™ class Conductivity circuit warranty:

- Soldering any part of the EZO[™] class Conductivity circuit.
- Running any code, that does not exclusively drive the EZO™ class Conductivity circuit and output its data in a serial string.
- Embedding the EZO™ class Conductivity circuit into a custom made device.
- Removing any potting compound.

Reasoning behind this warranty

Because Atlas Scientific™ does not sell consumer electronics; once the device has been embedded into a custom made system, Atlas Scientific™ cannot possibly warranty the EZO™ class Conductivity circuit, against the thousands of possible variables that may cause the EZO™ class Conductivity circuit to no longer function properly.

Please keep this in mind:

- 1. All Atlas Scientific™ devices have been designed to be embedded into a custom made system by you, the embedded systems engineer.
- 2. All Atlas Scientific™ devices have been designed to run indefinitely without failure in the field.
- 3. All Atlas Scientific™ devices can be soldered into place, however you do so at your own risk.

Atlas Scientific™ is simply stating that once the device is being used in your application, Atlas Scientific[™] can no longer take responsibility for the EZO[™] class Conductivity circuits continued operation. This is because that would be equivalent to Atlas Scientific $^{^{\mathrm{TM}}}$ taking responsibility over the correct operation of your entire device.